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Nonlinear Circuits and Nonlinear Devices
— Diode
— BJT
— MOSFET



n-Channel MOSFET
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Voltage Variable Resistor
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Applications include Automatic Gain Control (AGC)



MOS Transistor Models

simplifications
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Saturation Region Model — good enough

for many analog applications



MOS Transistor Models (Summary)
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MOS Transistor Applications
(Digital Circuits)
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Can be extended to arbitrary number of inputs
But the resistor is not practically available in most processes and static
power dissipation is too high



MOS Transistor Applications
(Digital Circuits)
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MOSFET Models
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MOS Transistor Applications
(Digital Circuits)
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MOSFET Models
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n-channel device p-channel device



MOS Transistor Applications

(Digital Circuits)
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MOS Transistor Applications
(Digital Circuits)
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MOS Transistor Applications
(Digital Circuits)
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Truth Table
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Performs as a digital inverter



MOS Transistor Applications
(Digital Circuits)
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Truth Table

4

. A
Performs as a 2-input NOR Gate B Y

Can be easily extended to an n-input NOR Gate



MOS Transistor Applications
(Digital Circuits)
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1 Truth Table

Performs as a 2-input NAND Gate A } Y
B

Can be easily extended to an n-input NAND Gate




MOS Transistor Applications
(Digital Circuits)
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Termed CMOS Logic
Widely used in industry today (millions of transistors in many ICs using this logic
Almost never used as discrete devices




Bipolar Transistor

C

B: Base
C: Collector
E: Emitter



Bipolar Transistor

C
B I
E

npn pnp



Bipolar Transistor
npn pnp

[ 1 ptypesilicon ]

1 ntypessilicon



Vertical npn BJT

Base Emitter Collector
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Bipolar Transistor

C




Bipolar Transistor




Bipolar Transistor
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Bipolar Transistor

Saturation

~

S

— Forward Active

Ve
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\ Cutoff

Most analog or linear applications based upon Forward Active region

Most digital applications involve Saturation and Cutoff regions and switching
between these regions as the Boolean value changes states



Bipolar and MOS Region Comparisons
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Triode Saturation



Bipolar Transistor
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Bipolar Transistor
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Multi-Region Model
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Bipolar Transistor




Bipolar Transistor

Simplifier Basic Multi-Region Model
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Small-signal Operation of Nonlinear Circuits

» Small-signal principles
« Example Circuit
« Small-Signal Models

« Small-Signal Analysis of Nonlinear Circuits



Small-signal Operation of Nonlinear Circuits

Small-signal principles

Example Circuit

Small-Signal Models

Small-Signal Analysis of Nonlinear Circuits



Small-Signal Principle

Nonlinear function
y=f(x)




Small-Signal Principle

y=f(x)

Region around

Q-Point




Small-Signal Principle

Region around

Q-Point

v

Xq
Relationship is nearly linear in a small enough region around Q-point

Region of linearity is often quite large
Linear relationship may be different for different Q-points



Small-Signal Principle

y=f(x)

Region around

Q-point

v

Relationship is nearly linear in a small enough region around Q-point
Region of linearity is often quite large
Linear relationship may be different for different Q-points



Small- Slgnal Principle
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» Device behaves linearly in neighborhood of Q-point
« Can be characterized in terms of a small-signal coordinate system



Small-Signal Principle

y | Linear Model at Q-point




Small-Signal Principle

y | Linear Model at Q-point




Small-Signal Principle

y
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Changing coordinate systems:

YssT¥Ya  y-y,
Xss=XXq

= ox, (X7%0) V=" X

Xl oX




Small-Signal Principle

y A YSS

Ya

XQ
of
Small-Signal Model: Ys = 7| Xss
ax X=Xq
* Linearized model for the nonlinear function y=f(x)

« Valid in the region of the Q-point
Will show the small signal model is simply Taylor’s series expansion

at the Q-point truncated after first-order terms



A

Small-Signal Principle

y ¥
Q-point y=f(x)

Ya| ‘ ™

Observe: /
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Small-Signal Model:
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Mathematically, small signal model is simply Taylor’'s series expansion
at the Q-point truncated after first-order terms

X
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Small-Signal Principle

Goal with small signal model is to predict
performance of circuit or device in the
vicinity of an operating point

Operating point is often termed Q-point

Will be extended to functions of two and
three variables



Small-signal Operation of Nonlinear Circuits

« Small-signal principles
Example Circuit
« Small-Signal Models

« Small-Signal Analysis of Nonlinear Circuits



Small signal analysis example

* Voo By selecting appropriate value of Vqg, M,
will operate in the saturation region

e Assume M, operating in saturation region
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Small signal analysis example

)"
VIN

V =Vysinwt

V) is small

By selecting appropriate value of Vqg, M,
will operate in the saturation region

Assume M, operating in saturation region
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Small signal analysis example

* Voo “C W ,
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Small signal analysis example

R
V =Vysinwt

* Voo

<
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V _
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Quiescent Output
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HC W, +VT]IJ}VM sinwt

ss Voltage Gain
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Alternately, substituting from the expression for I, we obtain
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Small signal analysis example

* Voo
R
_ _ § A —— 2IDQ R
Vi =Vysinwt | . v [V V ]
Vour SS T T
~
v
" | Observe the small signal voltage gain is twice the
Vss Quiescent voltage across R divided by Vo +V;

» This analysis which required linearization of a nonlinear output voltage is quite
tedious.

» This approach becomes unwieldy for even slightly more complicated circuits
* A much easier approach based upon the development of small signal models

will provide the same results, provide more insight into both analysis and
design, and result in a dramatic reduction in computational requirements



Small-signal Operation of Nonlinear Circuits

« Small-signal principles
« Example Circuit
Small-Signal Models

« Small-Signal Analysis of Nonlinear Circuits



