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Nonlinear Circuits and Nonlinear Devices
– Diode
– BJT
– MOSFET



n-Channel MOSFET
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Review from Last Time:



Voltage Variable Resistor
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Applications include Automatic Gain Control (AGC)

Review from Last Time:



MOS Transistor Models
simplifications

Saturation Region Model – good enough   for many analog applications
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Review from Last Time:



MOS Transistor Models (Summary)
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Review from Last Time:



MOS Transistor Applications
(Digital Circuits)
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• Can be extended to arbitrary number of inputs
• But the resistor is not practically available in most processes and static  

power dissipation is too high 

Review from Last Time:



MOS Transistor Applications
(Digital Circuits)

MOSFET Models
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Assume “1” ~ VH = VDD

Assume “0” ~ VL = 0V



MOS Transistor Applications
(Digital Circuits)

Assume “1” ~ VH = VDD

Assume “0” ~ VL = 0V

MOSFET Models
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Assume VT1~VDD/5 Assume VT2~ - VDD/5



MOS Transistor Applications
(Digital Circuits)
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If X=VDD , then VGS1=VDD>VT1, VGS2=0 > VT2 S1 closed, S2 open

Y = 0V~”0”

“1” ~ VH = VDD

“0” ~ VL = 0V



MOS Transistor Applications
(Digital Circuits)
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MOS Transistor Applications
(Digital Circuits)
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Truth Table

Performs as a digital inverter



MOS Transistor Applications
(Digital Circuits)
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Truth Table

Performs as a 2-input NOR Gate

Can be easily extended to an n-input NOR Gate



MOS Transistor Applications
(Digital Circuits)
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B YPerforms as a 2-input NAND Gate

Can be easily extended to an n-input NAND Gate



MOS Transistor Applications
(Digital Circuits)
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• Termed CMOS Logic
• Widely used in industry today (millions of transistors in many ICs using this logic
• Almost never used as discrete devices



Bipolar Transistor

B:   Base
C:   Collector
E:   Emitter



Bipolar Transistor

npn pnp



Bipolar Transistor
npn pnp

p-type silicon

n-type silicon



n+ buried collector implantBuried collector

Base Emitter Collector

Vertical npn BJT

Vertical npn BJT 
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Lateral pnp BJT 
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Bipolar Transistor
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Bipolar Transistor
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Bipolar Transistor
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Most analog or linear applications based upon Forward Active region

Most digital applications involve Saturation and Cutoff regions and switching
between these regions as the Boolean value changes states



Bipolar and MOS Region Comparisons
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Multi-Region Model 
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Simplifier Basic Multi-Region Model 
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Small-signal Operation of Nonlinear Circuits

• Small-signal principles

• Example Circuit

• Small-Signal Models

• Small-Signal Analysis of Nonlinear Circuits



Small-signal Operation of Nonlinear Circuits

• Small-signal principles

• Example Circuit

• Small-Signal Models

• Small-Signal Analysis of Nonlinear Circuits



Small-Signal Principle
y
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Nonlinear function
y=f(x)



Small-Signal Principle
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y=f(x)



Small-Signal Principle
y

x

Q-point

XQ
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Region around 
Q-Point

Relationship is nearly linear in a small enough region around Q-point
Region of linearity is often quite large
Linear relationship may be different for different Q-points

y=f(x)



Small-Signal Principle
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Relationship is nearly linear in a small enough region around Q-point
Region of linearity is often quite large
Linear relationship may be different for different Q-points

y=f(x)



Small-Signal Principle 
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• Device behaves linearly in neighborhood of Q-point
• Can be characterized in terms of a small-signal coordinate system

y=f(x)



Small-Signal Principle
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Small-Signal Principle
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Small-Signal Principle 

Changing coordinate systems:

ySS=y-yQ

xSS=x-xQ
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Small-Signal Principle 
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• Linearized model for the nonlinear function y=f(x)
• Valid in the region of the Q-point
• Will show the small signal model is simply Taylor’s series expansion

at the Q-point truncated after first-order terms

Small-Signal Model:



Small-Signal Principle 
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• Mathematically, small signal model is simply Taylor’s series expansion
at the Q-point truncated after first-order terms

Small-Signal Model:
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Observe:



Small-Signal Principle 

Goal with small signal model is to predict 
performance of circuit or device in the 
vicinity of an operating point

Operating point is often termed Q-point

Will be extended to functions of two and 
three variables



Small-signal Operation of Nonlinear Circuits

• Small-signal principles

• Example Circuit

• Small-Signal Models

• Small-Signal Analysis of Nonlinear Circuits



Small signal analysis example

Assume M1 operating in saturation region

By selecting appropriate value of VSS, M1
will operate in the saturation region

VIN=VMsinωt

VM is small
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Small signal analysis example
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Assume M1 operating in saturation region

By selecting appropriate value of VSS, M1
will operate in the saturation region
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Small signal analysis example
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VM is small
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Small signal analysis example

VIN=VMsinωt
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Alternately, substituting from the expression for IDQ we obtain



Small signal analysis example

VIN=VMsinωt [ ]TSS

DQ
v VV

R2IA
+

−=

Observe the small signal voltage gain is twice the
Quiescent voltage across R divided by VSS+VT

• This analysis which required linearization of a nonlinear output voltage is quite 
tedious.

• This approach becomes unwieldy for even slightly more complicated circuits

• A much easier approach based upon the development of small signal models 
will provide the same results, provide more insight into both analysis and 
design, and result in a dramatic reduction in computational requirements 



Small-signal Operation of Nonlinear Circuits

• Small-signal principles

• Example Circuit

• Small-Signal Models

• Small-Signal Analysis of Nonlinear Circuits


